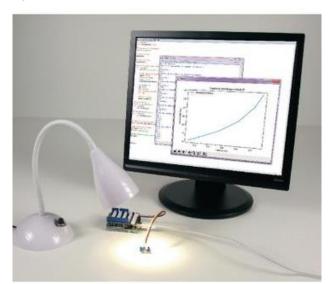
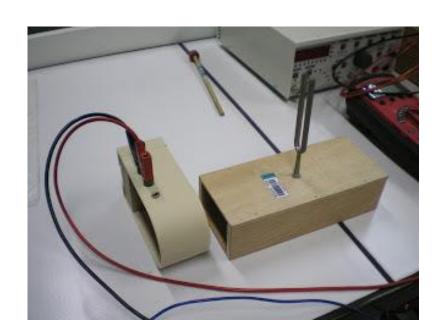
PHYSIQUE - CHIMIE TRONC COMMUN SPÉCIALITÉ

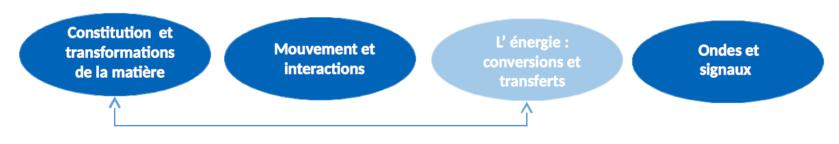

Lycée Claude Bernard

EN SECONDE

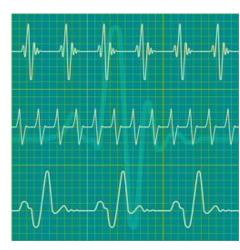
Points forts:

- la pratique expérimentale est centrale ;
- o modélisation : faire le lien entre les théories et le monde vécu ;
- utilisation de capteurs informatisés;
- initiation à la programmation (langage Python).

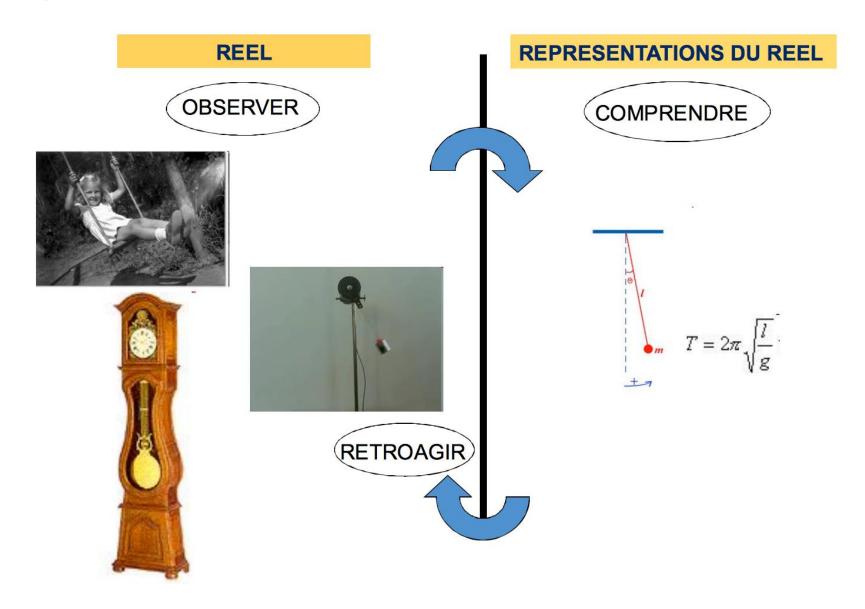

Objectif: accéder à une bonne compréhension des phénomènes étudiés et faire percevoir la portée unificatrice et universelle des lois et concepts de la physique chimie.


Horaires:

- 1,5 h par semaine en classe entière ;
- 1,5 h travail expérimental en binôme (demi groupe de 16-18 élèves).



THEMES ABORDES



Une structuration de la formation et de l'évaluation des élèves à partir des compétences travaillées dans le cadre de la démarche scientifique

Compétences	Quelques exemples de capacités associées
S'approprier	 Enoncer une problématique Rechercher et organiser l'information en lien avec la problématique étudiée Schématiser la situation
Analyser/ Raisonner	 Formuler des hypothèses Proposer une stratégie de résolution Planifier des tâches Évaluer des ordres de grandeur Choisir un modèle ou des lois pertinentes Choisir, élaborer, justifier un protocole Faire des prévisions à l'aide d'un modèle Procéder à des analogies
Réaliser	 Mettre en œuvre les étapes d'une démarche Utiliser un modèle Effectuer des procédures courantes (calculs, représentations, collectes de données, etc.) Mettre en œuvre un protocole expérimental en respectant les règles de sécurité
Valider	 Faire preuve d'esprit critique, procéder à des tests de vraisemblance Identifier des sources d'erreur, estimer une incertitude, comparer à une valeur de référence Confronter un modèle à des résultats expérimentaux Proposer d'éventuelles améliorations de la démarche ou du modèle
Communiquer	À l'écrit comme à l'oral : - présenter une démarche de manière argumentée, synthétique et cohérente ; utiliser un vocabulaire adapté et choisir des modes de représentation appropriés - échanger entre pairs

• Importance de la modélisation :

LIENS AVEC LA PREMIÈRE

• Progressivité et remobilisation des acquis.

EXEMPLE: LA LUMIÈRE



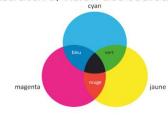
Lumière : sources, propagation, vitesse de propagation. Modèle du rayon lumineux.

En seconde: Vision et image

Lumière blanche ou colorée, dispersion

Réfraction

Lentilles, œil



En première : Images et couleurs

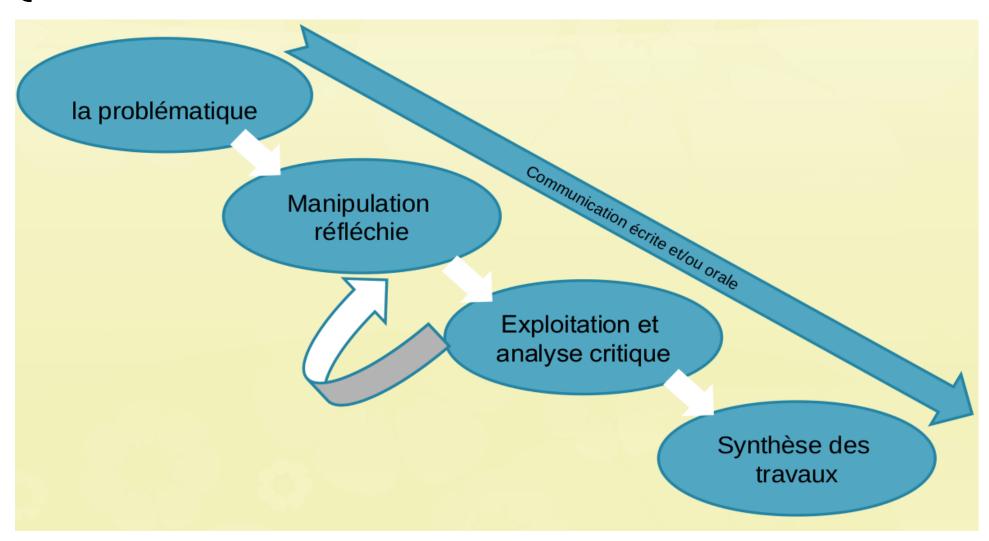
Relations de conjugaison

Couleurs des objets, synthèses additive et soustractive, vision des couleurs

SPECIALITE

• Un environnement adapté à la pratique expérimentale.

Aussi bien en physique qu'en chimie, les salles sont équipées pour permettre l'expérimentation assistée par ordinateur.



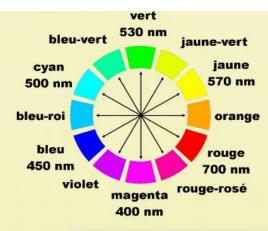
Un des laboratoires dédié à la préparation des manipulations des élèves en chimie.

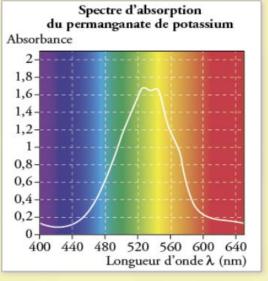
Pourquoi choisir la spécialité ?

- On est intéressé par les sciences et on est curieux.
- On a le goût de l'expérimentation.
- On aime résoudre des problèmes scientifiques.
- On cherche à relier l'expérimentation à la modélisation (formulation mathématique des lois physiques).

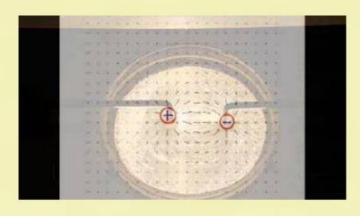
En spécialité, on pratique la démarche scientifique. Qu'est-ce ?

Constitution et transformation de la matière

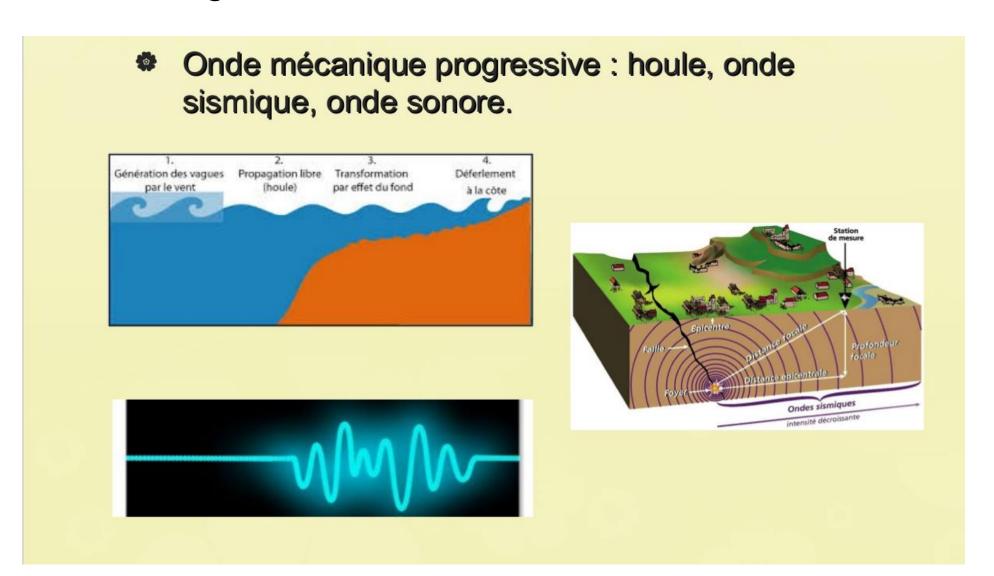

Prévoir la couleur d'une solution en fonction de son spectre UVvisible





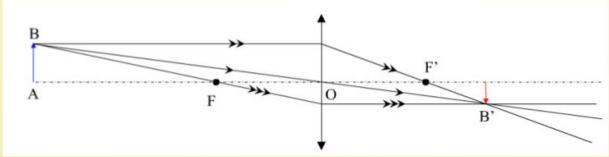

Mouvement et forces

Loi de la gravitation universelle:

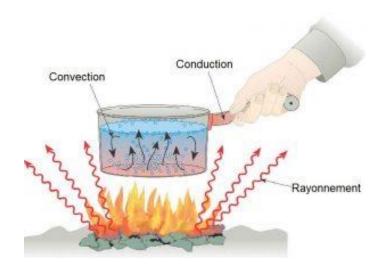


Electrostatique, loi de Coulomb

Ondes et signaux.




Lentilles minces, formation d'une image



• L'énergie : conversion et transferts

Poursuites d'études après la spécialité Physique-Chimie :

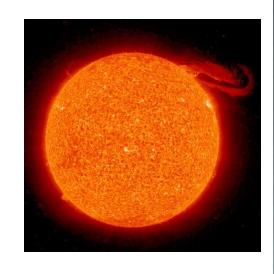
- Classes préparatoires aux grandes écoles (PCSI, MPSI, PTSI, BCPST);
- Ecoles d'ingénieurs post bac;
- Etudes de médecine ;
- Licences scientifiques (physique, chimie, math, SVT);
- Ecoles d'architecture (bi-cursus architecte-ingénieur);
- Certains BTS ou IUT;
- Métiers de l'environnement ;
- Formations paramédicales (kinésithérapeute, ergothérapeute, psychomotricien(ne)...);
- Licence STAPS (Sciences et techniques des activités physiques et sportives).

Exemples de métiers faisant appel à la spécialité Physique-Chimie.

ENSEIGNEMENT SCIENTIFIQUE (TRONC COMMUN)

Il est un enseignement du tronc commun:

- A la croisée des SVT et de la Physique - Chimie.
- Dispensé à raison de 2 h
 par semaine par un
 professeur de Physique
 et un professeur de SVT.



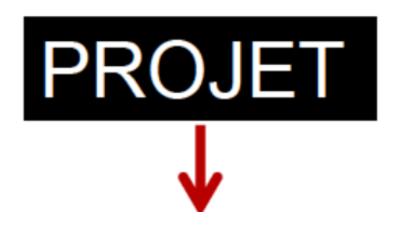
En Première, trois thèmes parmi:



Thème 1
Une longue histoire de la matière

Thème 2
Le soleil, notre source
d'énergie

ENSEIGNEMENT SCIENTIFIQUE TRONC COMMUN

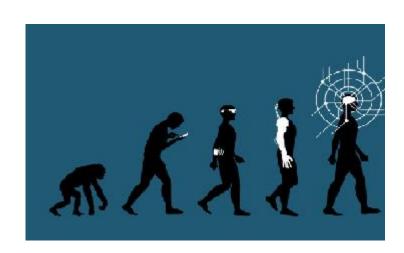


Thème 3 La Terre, un astre singulier

Thème 4
Son et musique, porteurs
d'information

Projet EXPERIMENTAL et NUMERIQUE durée 12h 3 dimensions

- utilisation d'un capteur
- acquisition numérique de données
- traitement mathématique, représentation et interprétation de ces données Remarque : pas d'introduction de nouvelles notions, travail en petits groupes


En terminale:

Thème 1 : Sciences, climat et société.

Thème 2 : Le futur des énergies.

• Thème 3 : Une histoire du vivant.

